8.1

8. CAPTURE-RECAPTURE METHODS.

8.1 Introduction

This chapter deals with some methods for estimating the absolute abundance of
an animal population, usingbservations ofmarked individuals. There aretwo broad
uses of marking for population studies. One use is in studying only the marked
population wth little attention paid to unmarked individuals. Such studies may be
concerned wwh temporal moverants (either local or migratory), delheation of
geographic range ("home range" of individuals, range oparticular population or
sub-group of a population), dife history aspects (growth rates, survival rates, age
specific reproductive rates, and so on). The other use isthat of concern here, in
which the primary interest is inthe change inobserved proportion tagged (which
may initially be zero) as &gging progresses.The basic principle isthe same in the
change-in-ratio method. An important distinction is that the more comlicated
capture-recapture methods domake use of information as tothe identity of single
individuals. A distinction is nade between "single-recapture” and "nultiple-
recapture” methods. In the early studies, the basisumption for virtually all of the
methods was that each and every individual in the population has the same
probability of capture in any given samfpng. Under such anassumption, any
individual behaveslike every other individual, and information that an individual
has been caught oncbefore or manytimes islargely irrelevant. One might equally
well replace amarked individual with one from another population insofar as the
theory of the method is concerned.

The assumption that individuals all behave alike insofar as capture is
concerned is not very acceptable nmst experienced field workers. In most cases, it
is clear that the assumption isnot realistic, andthe issue iswhether, in agiven
situation, the resulting biascan betolerated. Various aspects othis problem will
turn up in vwhat follows. It is worth rmentioning here, though, that one important
means of testingthe assumption ofequal probability of capture doesdepend on the
history of capture of individuals -- if individuals doot behave identically, then
their past history gives information on that fact. Bome modelssuch information is
used to produce an improved estimate of population size.

In describing the various methods, perhaps the mostimportant aspect isthat
of whether the population is"open" or "closed" to thosefactors that may produce
changes in the size of the population during the course cdpEure-recapture study.
Individuals may move into andout of the study areassome may dieand others may
be born or otherwise "recruited" to the population (in entomological studies,
transfers between instars, pupation, etcare additional such factors). A "closed"
population with constant probability of capturgermits very simple analges, mostly
based on the biomial distribution. Although such populations may not exist in
practice, such a model provides a useful starting place, and may at times be adequate.

"Open" populations produce many more complicatiomsarticularly if they are
small or if small changes are mportant. Then the models need to take intmccount
chance effets, that is, stochastic (as oppsed to deterministic) models need to be
employed. Onl quite recently have fully stochastic models been developed;
fortunately their applcation in practice idess difficult than many ofthe previous
methods. We are thusurrently at astage where only one geneal method may need
to be considered in many practicaituations. However, sincghat model also depends
on the same urealistic assumption of equal probability of capture, further
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developments are needed, and the practicing ecologist will have to spend adgraht
of effort in checking and cross-checking his estimates.

In some cases, thesimpler methods may beadequate, orconstitute about all
that can be doneunder the circumstances othe study. Occasionally they mayshed
some light on particular aspects of a problem, or weakness me@essary assumption
that may not be apprent in the analysis ofthe more sophisticated form. Students
will also need an understanding ofthe essentials ofthe various methods to
understand and appreciate much of what they will find in the literature on a
particular species. Thus a number of methods will be described here.

8.2 Petersen's method (Lincoln Index)

While the first recorded use of this method has beesmtribed to Aplace in the
16th century (Cormack 1968), there are two commonly cited origins foruses in fish
and wildlife work. Most fisheries workers know the technique "Bstersen's mthod"
due to asuggestion by @G.J. Petersen in1896. Wildlife workers tend to refer to
"Lincoln's Index" due to its use by F.C.htoln in efforts to estinate North American
waterfowl abundance inthe 1930's. Athird early use was byC.H.N.Jackson(1933) in
his studies of tsetse flies in Africa.

The method requires only two census periods, one involving the initial
marking of M individuals, ofwhich m are recovered inthe n animals caught on the
second occasion. Ifthe population isclosed (i.e.,there are no gains orlosses due to
immigration, emigration, mortality, etc.), then it can betuitively supmsed that the
fraction marked in the population (M/N) may be estimated bythe proportion of
marked animals (m/n) found in the second sample; that is:

AN

m/n = M/N and N =Mn/m (8.1)
The relevant probability distribution is the hypergeometric distribution.

The assumptions necessary tothe method can readily be understood by
reference to the model resulting in a hypergeometdistribution. One description is
via an "urn" model.Suppose we have a vessel sme sort(an "urn") containing N
objects, M of which beardistinguishing marks(tags). If the obgcts arethroroughly
mixed, one isremoved and recorded (but not returned), khen the remaining objects
thoroughly mked again, another removed and recorded, the objects mixed,another
removed, and so on utii n have beenremoved (m of which are marked), then the
hypergeometric distribution serves to describethe behavior ofthe random variable
m, the number of marked individuals recovered in a sample of n. In practice, als@
a random variable, but the wusual approach is toconsider the results to be
"conditional” on the nactually observed, orto supposethat we sampleon the second
occasion until exactly n individuals are examined for marks.

One advantage of theirn model is that ithelps clarify the position asregards
random sampling. In the urn model there is mequirement thatthe M marks be put
on according to any special schem#ie only requirementis thorough mixing before
each draw (equivalent torandom selection othe n animals taken onthe second
occasion). For all practical purposes, one thorough mixing is enough, sootteatcan
infer the essential assumption to beone of either a random marking or arandom
recovery. Both are not required, as has been stanedhe literature. Infact, it can be
shown that the only essential feature ishat the methods ofcapturing individuals
need only be such that thindividual probabilities ofcapture onthe first occasion
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are independent ofthose existing on the second (Junge 1963). Thus one might
attempt toput tags on by, saytrapping anduse another method (e.g., hunting) for
recoveries. A difficulty with such ampproach is inassuring that thetwo methods do
in fact result in independence ofthe two sets of probabilities. This cannot be
ascertained from twosampling periodsalone. Another, less crucial, limitation isthat
the variance formulas (given below) donot apply unless capture probabilities are
equal over all members of the population on the recapture occasion.

A summary of the assumptions is as follows:
(1) The marks (tags) are not lost and are always identified on recapture.
(2) The population is closed (but this assumption can be modified).
(3) Every individual has the same probability of capture (at recovery time).
Assumption (2) can be modified in two ways:

(2a) There arelosses oftagged and untagged animals which occur atthe samerate,
but there are no additions tothe population. This does notchange the proportion
tagged and the stimate of population size remains valid but applies only to the
population at the time of first sampling (tagging).

(2b) There aregains tothe population between initial tagging and recovery oftags,
but no losses, and the probability of capture is the same foindividuals during the
recovery period. If there are no losses, then at the timeeobvery, there are still M
tagged individuals in the population, and the proportion tagged (m/n) estimatest
fraction of the current population carries tags, sothat the stimate of eq.8.1 applies
to the population atthe time ofrecovery. Note that (2a) and (2b) thus etimate the
population size at tagging and at recovery.

As we have already noted, assumption (3) can be modified as:
(3a) Marking at random.

(3b) Independent probabilities ofcapture atboth marking and recapture (vhich
necessarily includes (3a) as a special case).

These several modifications depart from the conditions necessary for the
hypergeometric distribution to hold, and thus prevent strict applications of the
relevant variance formulas. One simple way to obtain a useful estimate of the
variance is to randomlysubdivide the number ofanimals initialy marked (M) into
several subgroups, and toséimat the population size separately for each such
subgroup. These independent estimates then providehe data forcalculating a valid
variance. Howmany subgroups touse depends onthe number marked initally (M)
and the fractionrecovered, since there are obvious drawbacks in havingany of the
subgroups result in no recoveries ofmarked individuals. Presumably one might
tolerate one such group, using the modified estimation formulas given below.

From a formal statistical point of view, the atimate of eq.(8.1) has the
drawback ofhaving an "infinite bias". This results because there &ways afinite
probability that m=0 (i.e., no marked animals are caught onthe second occasion).
Chapman(1951) proposed an adjusted equation to circumvent this difficulty:
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A (M+1)( n+1)
N ¢ = (m+1) (8.2)
which has variance estimate:
V= (M +1)(n +1)(M - m)(n - m) ©.3)

(m + 1)2(m + 2)

When N is large, the hypergeometric distribution (sampling wWthout
replacement) is very closely approximated by a binomddtribution (sampling with
replacement), and when P issufficiently snall, a Poissondistribution also provides
an excellent approximation. On thether hand, whenP is notvery snall, the normal
distribution may provide an adequateodel. Various rules have beersuggested as to
to when to apply the several approximations in practiGhapman(1948)used m/n as
a guide to magnitude of P, and gave the following criteria:

N < 500 m/n <.10 Poisson
m/n > .10 binomial

500 < N < 1000 m/n < ..075 Poisson
m/n > .075 normal

1000 < N m/n <.05 Poisson
m/n > .05 normal

However, other authors used less stringent rules. One of the best wayantansight
into the differences due to various approximations is to intercompats oftables of
the distributions for several examples.

The various approximations are particularly convenient incalculating a
confidence interval around an stimate from the Petersen method. DelLury (1951)
noted that, under the bnhomial assumption,P=M/N, sothat the expected value of the
random variable (m) here representing the number of successes is:

nM

E(m)=W (8.4)
with binomial variance:
V(m):% [1-(M/N)] (8.5)

so that if we substitute m/n as amstimate of P, an estimate ¢lie variance of m is
just m[1-(m/n)]. Ging one stepfurther, and assuming mis approximately normally
distributed, approximate 95 percent confidence limits for m are:

miZ[m(l—%)]llz

and Delury inserted these values in the Petersen estimate (eq.8.1) to provide
confidence limits on N, i.e.,

nM
U limit = 8.6
pper limi {m—2[n(1—rﬂn)]”2} (8.6)
. nM
Lower limit =

{m+Zn(1-nm N3
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An alternative way to proceed is to writethe estimate (eq.8.1) as N = M/pyhere p =
m/n, and to usetables orgraphs tofind confidence limits on Pin order tocalculate
upper and lower limits for N from those for p.

Still another approach (Leslie 1952) can be describedchgnging eqgs. 8.4 and
8.5 from those representing the random variable m, tothose for arandom variable
multiplied by a constant:

E(ax) = aE(X) and V(ax) = a2V(X)
. 1
where a is a constant. If we use a=sr o then:
m
E(nM ) = 1/N (8.7)
m 1 M
Vam )= By

but since N is unknown, we estimate tlvariance by replacingl/N by m/nM (eq.8.7

justifies this), and obtain:
m m
s2(—7 ) = rm—(nM)z - 1 (8.8)

whereupon, assuming 1/N to be approximately normally distributed, one can obtain
approximate 95% confidence limits on 1/N as:

1
g2 s(% ) (8.9)

The main advantage here is that estimators ofadd quite skewed agan be seenfrom
sampling experiments, or by considering {@Em/n) to be normally distributed and
reflecting what the distribution of 1/p will look like. It turns out that 1/N is much
more symmetrically distributed,hence confidence limits expressed as in eq.@® are
presumably less biased than those previously described here.

Assuming a binomial distribution(rather han the hypergeometric) leads to a
slightly different correction for bias in the estimation equations. Bailey (1952)

suggested:
N M(n + 1)
N B (m + 1) (8.10)
with variance estimate:
M2(n + 1)(n - m)

vl(_m + 1)2(m + 2)

(8.11)

The difference between eq.(2) and eq.(8.10) islearly very snall. Bailey (1952)
showed that N as estimated from eq.(8.1) tends to overestimate, having a bias "of order

1/m", while eq.(8.10) has a bias of orderTe

Cormack (1968:460) and Seber (1982) provide convenient summaries of a
number of schemes toavoid biased estimates through "inverse" sampling. These
schemes require sampling on asecond occasion tocontinue util some pre-
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determined event happens, e.g, untilaetty m marked animalsare caught. Inmany
field situations such schemes are very difficult to carry out, and, aspreviously
indicated here, the crucial source of bias isthat having to do with unequal
probabilities of capture, for which satisfactory corrections are presently difficult. In
most practical situdions, the investigator should use eqs. (8.2) or (8.10). If the
numbers of recaptures (m) ismall enough tomake the theoretical biases in
estimation impotant, itwill also be true that the estimates will be highly variable,
and thus will provide very little information onthe population under study in any
case.

Exanpl e 8.1 Petersen nethod

Ni xon et al. (1967) trapped and marked squirrels (Sciurus) in Chio in 1962. In
their first day of trapping, 22 individuals (M were caught, while on the
second day, 13 were caught (n). Seven of these were marked (m, having also
been caught on the first day. Fromeq. (8.1), we have:

N 22(13
N :—7(—1 =40.9, whil e Chapman's equation (8.2)
gi ves:
AN
N C:23814 -1=39.2,with variance estimte:
N 23(14)(15)(6)
V(N ¢) = 64(9) = 50.31

DeLury's estinmated confidence limts are (eq. 8.6) calculated from

13(22)

7
+ =911 /2
7 E207(1 - 1)
whi ch gives: 28.0 < N<84.0. Leslie's approach (eq.8.8 and 8.9) gives:

odm 7 . T\- 0.0000395
v )= g1

and 0.0119 < 1/N < 0.0370 which is useful if one has sone interest in the

reci procal of population size. Inverting gives essentially the same result as
DeLury’s approach. Bailey's nethod (eq. 8.10) gives:

Il\\l B =Az8ﬁl =385 with variance estimate (eq. 8.11):
A 2
52(N B) = M: 70.6.
64(9

8.3 The Schnabel method

We now consider a situation wherein sampling is not restricted to two
occasions, and all of the unmarkezhimals caught insuccessive samples are marked
and returned to the population. In most applications, the marks only servedtoate
that the animal has been caught previously and do notidentify individuals. The
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method was first proposed bySchnabel (1938) and further studied by Schumacher
and Eschmeyer (1943) who provided a variance setimatt and an alternative
estimation formula (also derived by Hayne 1949) . The basic assumptions are those
previously given, i.e., (1)marks are not lost nor missed, (2) thepopulation isclosed,
and (3) constant capture and recapture probabilities.

A very convenient way to visualize the process and to derive the various
equations is that of DeLury (1958). An initial sample servesintooduce some marked
individuals into the population, and ten k further samples are t&en (gving k+1
sampling periods inall). Estimates areobtainable for populationsize in each of the
subsequent sampling occasions buodt for the first (although the assumptions do, of
course, imply that the population is of constant size throughout the study). \oisth
noting that there is norequirement that the first set of marks be put on atrandom
(i.e., that all individuals have the same probability of capture). Thus if iteasible to
mark asubstantial number ofanimals by some inexpensive but obviously biased
method, the investigator might profitably do so, and ten revert tosome more
expensive mans ofcapture that is more in line with theassumptions for the Kk
subsequent recapture periods.

The notation used here is as follows:

Mij= number of marked individuals in the population jst before the ith sample is
taken; i = 0,1,2,...,k so that ¢Mis the number marked on the first occasion.

nj = number of individuals caught orfthi sampling (since, in most studiesg & M1, we
will be concerned here with 1nn2,...,nk).

mj = number oftagged individuals caught inthe ith sample; ny =0, and weconsider
mi,m2,...,nk.

In any given sampling (after the initial marking), mj/nj gives an esthate of

the proportion marked in the population. If sampling is random wth respect to
whether ornot the animal is marked(i.e., aconstant probability of capture holds),
then we have a binomial-type situation applying at the timesasfhpling, and we can

. . mij
write (with p :W ):

e ]=— (8.12)

mj i M
V[—i 1= 8 N (8.13)

Since N is unknown, it imecessary taise mj/nj to edimate the variance, as isisual
in dealing with samples from a bnomial distribution. The data from a capture-
recapture study can beconveniently plotted with mj/nj on the vertical axis and M
along the horizontal, and idedly should constitute aseries of points (nYnj and M;j)
scattered about astraight line through the aigin. Solutions tothe problem of
estimating N depend on the choice of methods for fitting a regression line toddhbe.
That is, eq.(8.12) can beepresented as straight line through the origin with slope
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equal to 1/N; if one writes jgymj/nj and ¥=Mij, then the line y=bxj is equivalent to eq.
(8.12) with b=1/N.

Since the "y" values (m/nj) are subject tosampling (clance) errors, a
weighted regression scheme is indicated.One choice is touse reciprocals of the
variance estimates [e(.(8.13)] asweights (thus the more precise data have greater
weights). This procedure leads to Schnabel's original formula, whiak to besolved
by iteritive (trial-and-error) methods; that isone finds avalue of Nmost nearly
satisfying:

e
Smi _zA( DL (8.14)
N- mj

for which Schnabel gave an approximate solution as:

A Z NiMj
However, DelLury pointed out that one of the common features of aapalication of
the method is that of &endency for tagged individuals to begrouped or clustered in
the habitat, which makes eq.8.13 apoor variance estimate(it underestimates). He
therefore proposed wighting by the "sample size" (nj) at each point intime. This

gives the simpler Schumacher-Eschmeyer formulation:

2
A ZniM;
N = STV, (8.16)

A variance for the estimate (8.16) is calculated inthe same manner as for
weighted regression equations. This gives:

2 M2
s2 :{Z(% ) - (Zm—'M'z)— Vi(k-2) (8.17)
i ZniM;

and confidence limits are calculated from:

C.L. = Zni Mi2
MM, £t [$Zn MY ?

(8.19

where the *sign determines lower and upper limits respectively, agdreffers to the

value obtained from t-tables for selecteadand k-2 degrees of freedom. Ammportant
point here is that a sal number of sapling times will result in fairly large values
of ty and hence wider confidence limits than might be obtainedwith more days of

tagging.



8.9

Exanpl e 8.2 The Schnabel nethod

The trappi ng nmentioned above (Exanple 8.1) was continued for a total of 11
days. The data are given below, along with the calculations for eq.(8.16).

Number Tagged in
caught Recaptures population
N

Day (nj) (mj) (Mj) ImiMj _n_M'_z N
1 22 0 0 0
2 13 7 22 154 6,292 40.9
3 15 10 28 434 18,052 41.6
4 10 5 33 599 28,942 48.3
5 6 5 38 789 37,606 47.7
6 5 3 39 906 45,211 49.9
7 15 10 41 1,316 70,426 53.5
8 11 6 46 1,592 93,702 58.9
9 18 8 51 2,000 140,520 70.3
10 8 7 61 2,427 170,288 70.2
11 16 10 62 3,047 231,792 76.1

- : - mi 1
Using DeLury's regression approach to the data, we |et y|—m » Xi = Mi,» and B—ﬁ

Thus eq. (8.12) becones E(yj) = B Xj, and a weighted equation using sanple
sizes (nj) as weights is:

n ZWiXiYij ZmiMi

= 5 = > and this estimates the reciprocal of N, hence
ZWiXj ZniM;j
eq. (8. 16).

Calcul ating a variance estimate (eq. 8.17). we get:

2 A
s2 E [44.772 - 3,047 ]1=0.5243, and 95% confidence linmts for N ,from
9 231792
eq. (8.18) are:

231792 _ 231792

- or 60.4< N < 102.6
3047+ 2 2¢( 052 23179P'> 3047+ 788 59

Since the last day's trapping turned up 6 unnarked squirrels, there were at
least 68 (M1 = 62 and 6 unnmarked) in the population, so the lower limt

shoul d be 68. In the next hunting season, 41 squirrels were shot, of which 25

694
were marked. Using eq.(8.2), we have N(C = 95—63_1:1105 which is
appreci ably above the wupper limt. The authors felt that probabilities of
capture were not constant, with some individuals being nore likely to be
recapt ured.

Exanple 8.3 Estimation from frequency of capture

In a situation like that of Exanple 8.1 and 8.2, where it appears that the
popul ation i s being underesti mated, the best cure no doubt is to identify the
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faulty assunption and do sonething about it. This is not always as easy as it
sounds. One way is to mark by one technique and recover by another, e.g., to
tag by trapping and recover tags in hunting. However, this approach doesn't
necessarily cure the problem (see, for exanple, Eberhardt et al. (1963:43-47),
in which a particular nodel, the geonetric distribution was postulated for
recaptures). There is, of course, no assurance that this nodel should hold
wi dely. Seber (1982:Ch.4) summarizes the theory and gives sone other nodels
that m ght be used. Eberhardt (1969) found that the geonetric distribution did
seemto fit a wide range of recapture data (40 sets on 10 species). An exanple
of application of the nethod is available in the paper by Edwards and
Eber hardt (1967). A series of taggings were carried out on a population of
cottontail rabbits confined to a 40 acre pen in Chio, in the fall of 1961.
Data for a Schnabel census are set forth bel ow

No. of Tagged in
captures Recaptures Population
nj mij Mi

Oct. 24 0
9
15
18
29
33
34
42
45
51
52
53
62
63
68
74
74
74

WRNNNNN
QOO U
[ [

Nov.

=

=
OCQUIO R UINMNOWONm U1 N OO

NOoOUuokrJUa~NNWMOR_AMMWODNO

w
Bom\lmmhwm,_\p

Totals 142 66 76

Students should carry out the Schnabel calculations in order to gain
famliarity with the nethod. Edwards and Eberhardt (1967:Table 3), using eq.
8.16, obtained a population estimate of 97 aninmals. The actual population in
the pen was 135 rabbits, previously caught by drive-netting (to avoid previous
experience with box-traps, which were used for the experinental study of
capture-recapture nmethods), and introduced on Cctober 19, and 29, 1961.
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Frequenci es of capture were:

Number of Number of Number of
times caught rabbits captures
1 43 43
2 16 32
3 8 24
4 6 24
5 0 0
6 2 12
7 1 7
76 142

The underlying nodel for the frequency distribution (geonetric distribution)
is a very sinple one:

f(x) = pg* (x=0,1,2,....)

where qg=1-p, and p is the probability that the animal wll not be caught at
all, i.e., f(0) = p. Strictly speaking, the geonetric distribution applies to
a conceptually infinite series of trials, and can be at best an approxi mation
to reality. Seber (1982:Ch. 4) can be consulted for various other theoretical
difficulties and for the nature of the approximtions on which the nethod
rests. In the present instance, there were 18 trapping days and the naxi num
nunber of tine any individual was caught was 7. In sone situations, when the
maxi mum nunber of captures approaches the nunber of capture occasions, an
adj ustrent for truncation may be needed (the number of trapping occasions sets
an upper limt on the possible nunber of recaptures). Seber (1982:172-174)
gives a nethod for doing this and uses the data of Exanple 8.2 above to
illustrate the nethod.

The essentials for estinmation by the frequency of capture nethod are as
fol |l ows:

n S -r N (s -1)
q = and N SRC
s -1 S - r

where r is the nunber of individuals that are caught s tines. Referring to the
data above, it nmay be seen that r = 76 and s = 142. Estimates thus are:

N 142 - 76 _ Ao 76(141) _
——141 = 0.468 and N =142 - 76 = 162.4

In this instance, the nethod thus overestimates the known population. The
estimates above can be used to set up a goodness of fit test by calculating
expect ed nunbers as:

N N
and introducing estinates of N and q . This yields the followi ng results:
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Original
Number of number of Calculated
times caught rabbits number
1 43 40.42
2 16 18.92
3 8 8.86
4 6 4,15
5 0 1.94
6 2 0.91
7 1 0.42
76 75.62

These are obtained from Nﬁkf2162.4(0.5319)(0.4681) = 40.43 for the

first entry, Npof =162.4(0.5319)(0.4681)2 = 18.92, and so on (multiplying
each successive entry by 0.4681). It can be seen that the data are fitted
reasonably well. However, students should do a chi-square calculation to check
this. In the present exanple, 135 rabbits were introduced into the pen, so we
have 135 - 76= 59 in the not-caught (0) category. The expected nunber is
162.4(0.5319) = 86, which is substantially |arger

Exanpl e 8.4 Mean Petersen net hod

The Schnabel nethod depends on the population being closed (i.e., the sane
population of N individuals is present throughout the study). |If this
assunption is doubtful or disproven, then it is necessary to use a nore
conplex method in which rates of loss (and/or gain) to the population are
estimated. Before doing so, it may be worthwhile to consider a very sinple
approach, in which Petersen estinmates are formed from successive entries in
the table of data. That is, referring to the data of Example 8.2, the first 2
days can be used to obtain a Petersen estimate, then the results from day 2
and day 3 can be used, and so on. As noted in Sec. 8.2, the assunption of a
cl osed popul ati on can be rel axed sonewhat for a Petersen estimte (assunptions
2a and 2b), so that the sequence of Petersen estinmates may be used to | ook for
evidence of a trend in the population. If both gain and |osses are taking
pl ace, the method isn't, strictly speaking, acceptable. However, if day to day
changes aren't large, the overall average may be useful. This leads to the
"mean Petersen" estinate proposed by Chapnan (1952; see al so Seber 1982:138).

Estimates are formed according to eq.8.2 and averaged:

N 1 k
N = ————:EI% (only k-1 estimtes can be obtained fromk
k_1|:2
peri ods) .
Vari ances can be estimted by averaging the estinmates of eq. 8.3 as:

1 k

(k _1)2 ZV(N{))

(w(N) =

or as the variance of the individual estinnates:



8.13

v,(N) = T 1)( Z[N ave(N )]

Students shoul d performthe cal cul ati ons using the data of Exanple 8.3.

8.4 Methods for "open" populations

All populations are subject tochange, sothe methods described thus far are
mostly useful undercircumstancessuch that any change in populationsize islikely
to be of minor importance. As we notegarlier, if there are only gains or bsses, the
Petersen method may give a validtimate for one of thetwo sampling @casions. In
general, however, one needs tohave a method capable of taking into account
temporal changes in populations.

Early workers largely dealt with opempopulations by assuming constamates
of gain or loss. When populations are larg, such deterministic models can be quite
satisfactory. However, even when a large populationbé&éng studied, itusually turns
out that some aspects of the stud§ll depend on smallnumbers, andthus introduce a
stochastic elementinto the analysis. Consequently, awumber of models have been
developed that have both deterministic and stochastic elements. Some of tobels
are very complex and require cumbersome omtricate calculations. Versions of a
fully stochastic model for open populations wre published by G.M.Jolly (1965) and
G.A.F.Seber (1965).Cormack (1968) suggested that, inasmuch as virtually identical
results were obtained independently byJolly and Seber, thetechnique should be
called the Jolly-Seber method.

Sone of the earliest efforts todeal wth open populations arose from the
pioneer studies of C.H.N.Jacksonon tsetse fly populations in Africa (Jackson
1937,1939,1940,1948). Haused two rather different ehemes, oe (the "positive
method") depending on a singleelease of darge number ofindividuals followed by
a series of samplings in which markeahd unmarked individualsnvere tallied, but no
further marking was done (however, marked individuals were released againafter
capture). In the second, "negative" method, markiwgs accomplished on aeries of
occasions but recaptures wre tallied only in one finalintensive saming. The
negative method uses thegreater reductionin returns from the earlier releases (as
compared tothose from laterreleases) to &imate survival rates, which are in turn
used to estimate the number of markadimals alive in the population atthe time of
the final large scale recapture sampling. An stimate of population size atthe final
sampling can thus beobtained from the Petersen formla, but M is now estimated
rather than known exactly. Because any imgrants are reflected in the final
sampling, it isnot necessary tamake special provision for measuring immgration
(of course the rate of immigration is not estimated).

On the other hand, the positive method may be expectethetasure dilution by
immigrants since all of the marking isdone in theinitial survey. Thus the decrease
in proportion markedin successive surveys should reflect the effect of immigration
(or other sources ofunmarked animals). Combining the two methods gives the
necessary ingredients for a complete analysis,and this is what the moregecently
developed methodsare designed toaccomplish. Although direct use of the Jackson
methods is not now recommended, it may happen that one oftwheschemes may be
useful in special circumstances -- for example, Jackson's work unskilled &sistants
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were sometimesused tocarry out marking on abroad scale. Bailey (1951,1952) gave
improved estimates for Jackson's methods, while Chapman and Robson (1960)
described methods to improve on his survival estimates.

A method ascribed to Fisheand Ford(1947) ismainly of hisbrical interest by
virtue of its use of a'trellis" diagram to chssify recaptures onreach day by the dates
of release. The method thususes data on all previousecaptures ofindividuals. No
variance etimate was given. Adetailed study by Leslie andChitty (Leslie and Chty
1951, Leslie 1952, and Leslie, Chitty, and Chittyl953) developed arather extensive
approach todealing with open populations. They assumed that,with small samples,
observational data as to various classes (e.g., date last caught) cespresented as a
multinomial distribution, andthereby produced aeries ofestimating equations. One
problem isthat the solutions are very difficult to obtain if there are anumber of
sampling periods.

It is intuitively evident that estimation ofgains and lossesfrom a population
will require a minimum of three sampling periods. Thus "Bailey's triple catch”
method (Bailey 1951, 1952) is of interest both as anillustration and a prospetive
method for either pilot studies or rapid estimates. The various items of data are as
follows:

Period(i) Time Total Total tagged Marked individuals
captured and released caught later
0 0 So
1 t1 ni s1 mQ1
2 t1+t2  n2 mQ12.mp2,m12

In the above table, gy are thosecaught inthe first time period and recaptured in
the second. Some of these appear againthe third periodand arelabelled np12. The
estimates are:

nim., +
Nl _S (Mg + M) (8.19)
My, M,
A A mqQin2
A = ex t2) = 8.20
P 2) = frmosTmoTs) (8.20)
A A s1(mp2+mQ12)
= exp(-a t1) = 8.21
i p(-d t1) Somia (8.21)
Vari ance estimates are:
N N 1 1 1 1
v(N 1)= N 12 + .= 8.22
(N 2) 1T *miz T mo2 + mo1z2 ni ! 8.22)
N n 1 1 1 1
VA )= A 2 + e 8.23
*) [m01 mop2 + mQg12 ni n2 ] ( )
N N 1 1
- 2
\Y; = + 8.24
@)= 1255 * o s mors ! (8.24)
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Note that exp(ﬁ(z) estimates the gains tothe population in the time interval ()

between second and third catures (B’ is an instantaneous rate, while exp(-a,)
measures losses in the first time intervall ftetween initial marking and the second
sample (first recaptures). For the method to diectly valid, it hasto be assumedthat
rates of loss and gain are constant during the study period, sdntpertant estimates

are ﬁand o. With this arrangement, one avoids the necessity for having t.

The fully stochastic (Seber-Jolly) models usesome additional notation and, in
common with many earlier models, require knowledge ofthe identity of individual
animals, or atleast the occasions on which individuals are maked, so that inmany
cases identification of individuals is practically essential. Additional symhased are
as follows:

si = markedanimals released othe ith occasion (the jsmay be equal to the pif all

unmarked animals are marked and no individuals are Kkilled in handlingtlberwise
removed from consideration).

ri= the number of thejsthat are again caught before the study is concluded.

zi =number ofindividuals in the population that have beenmarked before the ith

period and are caught agai after the ith period but not during the ith period (this

then is ameasure ofthe marked animals known to bpresent during the ith period
but not caught then).

The first estimaterequired isthat of the number ofmarked individuals (M) alive at
the {h period:

A Zjsj .

o= = +m (=1,2,....k-1) (8.25)

There areagain k+1 marking periods, the first (denoted by asubscript ofzero) and
the last (k) for which there is not sufficient data to estimatg TMe basis foreq.(8.24)

can be seenintuitively by consdering the fraction Zz/(Mj-mj) -- this is the
proportion ofthe marked animals alive at time i that are notaught then but are
subsequently caught. Furthermore, out of the g released onthe ith occasion, [ are

caught later. If theanimals behavealike (the key assumption ofequality ofcapture
probabilities, again), hen clearly these two fractions should measure the same
guantity; hence equating them gives:
zZj ri
Mij - mj Si

and rearranging yields the stimate of M given in eq.8.26. Perhaps itshould be

mentioned that mj represents number oftagged animals inthe catch (n) at the ith

period, as ithas in previous models. Igo, we retain the assumptions that tags are
neither lost nor misread, as &l asthat of equality of probability of capture among
individuals on each occasion (however, this probability can change between
occasions).
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Population size on theth occasion is simply estimated by the Petersen method:

AN
niMj
e

N | = (i=12..k1) . (8.26)

Again, estimates for the first and last periods are not available.

Survival between sampling occasions dtf) is estimated very simply from the
data on M:
A
A Mi+1 .
O = — (i=0,1,...,k-2) (8.27)
Mj + sj - mj

N
The denominator iscomprised ofthe M j animals estimated to bealive at the ih
trapping plus any newly marked animals actually released at that timenjfs

The number of animals coming into the population is estimated as:

Bi=Nis1-® (N j-ni+sp (i=1,2,...k-2) (8.28)

and the logic of the estimate is evident from its structure. There aranikals in the
population at the th sampling ofwhich nj-sj are removed (i.e., the nj caught minus

any removals; often jgsj and none are removed bythe experimenter). Afraction&{
of these survive to the next period, so the equation estimates the numbErofuits"
still alive at the i+8! sampling.

A fifth estimate, that of the probability of capture at tHé isampling is often
useful:

Wi =~ (8.29)
Again the logic is straightforward, and an equivalent estimateiis mi/Mi.

The variances of the several estimates are complicated, reflecting the
complexity of the underlying theoretical development. Seber (1982:Chapter 5) gave a
full treatment. A briefer version with simpler equations appears in the monograph
by Pollock et al. (1990). They use corrections for small sample biases of the kind used
in eq.(8.2). Most users will no doubt depend on a computer program to estimate
variances. A number of programs are available, and the Wildlife Society maintains a
Web Page with access to a variety of programs. The address is:

http//fwie.fw.vt.edu/wshb/

This page contains a link to the Colorado State University Department of Wildlife
and Fisheries and Colorado Cooperative Unit Web Page which provides access to
program MARK, currently one of the major programs for capture-recapture and
survival estimation. The Appendix to the present course contains a program (JSMP)
to do the main calculations and to bootstrap results.
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Exanpl e 8.5 the Jolly-Seber nethod

The main difficulty in applying this nethod lies in understanding and naking
an accurate tally for the basic tables from which the estinmates are made.
These procedures can best be understood by starting with Table 8.1, which is a
tabulation of the history of capture for 56 Wddell seals. There were 5
sanpling or census occasions. On the first (i=0),. 28 tags were put out. On
the second (i=1), 12 new animals were tagged, 11 on the third, and 5 on the
fourth. None were tagged on the fifth census (but this quantity is not
rel evant to the estimtes, anyhow)

The entries in each census colum denote the history of a given animal. Thus,
tag nunber 1 was caught initially, but never seen again, while nunbers 11 and
12 showed up on every occasion. Nunber 30 was not tagged until the second
census (i=1) and was not seen on the fourth (i=3), but showed up again on the
fifth visit to the study areas.

The basic table of summary data is Table 8.2, in which the entries are the
NMi, which is defined as the number caught in the ith sanple that were | ast
captured in the hth sanple. The top two rows contain basic data from the
actual census trip. The first itemis the nj, total nunber of aninmals exan ned

on each census. The second item contains the nunber of tagged aninmals that
were released at that census. In many studies, all of the untagged aninals
would be tagged and released, so that sj, the nunber of tagged aninmals

rel eased into the populations at each census would be equal to nj. In the
present exanple, this was not possible, so that of the 63 (ng) animals
observed in the first census, only 28 (sp) were actual ly tagged.

The nhj entries in the body of the table start with npi, which is the nunber

of the 28 animals tagged on the first visit (i=0) that were found again on the
second visit. The next entry in that row (np2=2), are those of the 28 tagged

animals that did not show up until the third census (i=2). The final entry
(mpg=1) is tag number 22, who was observed only in the first and |ast

censuses. All of this data comes fromthe first 28 tag nunbers.

The next row of the table of nhj includes tagged animals |ast seen on the

second census (h=1) and then observed on the third, fourth or fifth census.
This now brings in the data fromtag nunbers 29-40, as they were tagged in the
second census. Totals of the table row entries constitute the rp , the nunber

of animals |last captured on the hth sanmpl e and then reobserved at sone tine in
the future. The final colum includes those aninmals initially tagged but not
observed again (i.e., tag numbers 1,2,5,6, etc.). This nunber is not used in
the cal cul ati ons, but serves as a check, since rp plus this nunber equals the

nunber of tagged animals released in the appropriate census (e.g. the 28 of sg
equal s 17 + 11).

The only really practical way to be sure of one's understanding of this
procedure is to actually reconstruct the other table entries from Table 8.1

A second table is usually prepared as a means of calculating the zj. This is
shown as Table 8.3, which shows the chj, those individuals caught in the ith

sanple that were |ast caught in or before the hth sanpl e. Thus inspection of
Table 8.1 shows that cqg2=2, i.e., tag nunber 3 and 8 neet this criterion. W

also have, as a further exanmple, that cpg4=1, since there is only one
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i ndi vidual (tag 22) caught in the first and | ast censuses only. The sum of the
row entries give z1, z2, and z3. These totals should be checked by scanning

the tables with the appropriate definition in nmnd. For exanple, z2 is the

nunber of animals caught both before and after the 3rd census (i=2). Hence,
tag nunbers 9, 10, 13, 16,17,22,...,40 qualify (11 in all). One could, of course,
just make such a tally directly and not bother with Table 8.3, but it is best
to have the cross-check resulting from nmaking the table and then a direct
count. Logically, entries cg1, €12, €23, and c34should be in the table, but

these are just np, np, and ng and do not correspond with the definition of zq,

i.e., caught before and after but not in the ith sanple. Once the necessary
ingredients are in hand, calculation of the estimates is straightforward from
the definitions given in equations 8.25 to 8. 29.

Table 8.1. History of capture for Jolly-Seber census.

Tag Census number

number 0 1 2 3 4
Tags put out at first census

O©CO~NOUIPA~,WNPE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

'l RRPRRPRPRRERR!

[EY
1
1

PRRPRPRRPRRPRRPRPRRPREPRRERPREPRRERREPRRERRERRERRERRER
IHHI

Tags put out at second census
29 -
30 -
31 -
32 -
33 -
34 -

PRRRERR
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35 -
36 -
37 -
38 -
39 -
40 -

PR PR R
R R R
PR

Tags put out at third census
41 - -
42 - -
43 - -
44 - -
45 - -
46 - -
47 - -
48 - -
49 - -
50 - -
51 - -

PRRPRPRREPRPRRERRER
1
1

Tags put out at fourth census
52 - - -
53 - - -
54 - - -
55 - - -
56 - - -

PR PP R
1

Table 8.2. Tabulation of the my,;, the number caught on the ith sample last captured on the hth
sample.

i 1 2 3 4 5
ni 63 43 41 42 58 number not
Sj 28 24 24 22 23 h seen again
0 - 12 2 2 1 17 11
1 i - 11 4 4 19 5
2 - - - 11 3 14 10
3 - - - - 15 15 7
mj 0 12 13 17 23

Table 8.3. Tabulation of cp;, the number caught in the ith sample last caught in or before the hth
sample.

h 1 2 3 4 5 Total
- - 2 2 1 5=29
1 - - - 6 5 11 = z2
2 - - - - 8 8 =23
3 - - - - -
A programin the Appendix (JSWMP) cal cul ates these results, and is illustrated

wi th the above dat a.
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8.5 The Manly-Parr method.

The Jolly-Seber method has largely become the standard method for dealing
with open populations. A method devised by Manly and Parr (1968) gives very much
the same results, but has not been widely used. With the availability of computer
programs for the Jolly-Seber method, the Manly-Parr approach may not receive
much further attention. It does have the advantage of simplicity and is worth
remembering inasmuch as estimates can be obtained with an ordinary calculator.
One can thus explore a set of data with without needing reference or access to a
computer. Tabulate the data in a matrix of zeros and ones with dates of observation as
columns and records of individuals as rows. For every column (except the first and
last) identify those individuals known to be in the population on that date by finding

those that were seen before and after that date. Label this group vekef@ i= 2,3,...,
k-1 (or 1,2,3, ...,k-1 if you designate the first occasion as 0 as done in the Jolly-Seber
notation). Now count the number of individuals that were actually observed on that

occasion, and designate them as Then:

5 :% (i=23,.51) (8.30)

estimates the probability of capture on the ith occasion, and the population present
on that date is estimated as:

M :% (i=23,..s1) (8.31)

The following figure shows Jolly-Seber and Manly-Parr estimates for a number of
sets of data from a capture-recapture study of Weddell seals in Antarctica, and shows
that the two methods gave virtually identical results.
900
800
] y = - 1.0279 + 0.99988x RA"2 = 1.000
700
600
500
400
300
200

100 -

MANLY-PARR ESTIMATES

O ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1

0 100 200 300 400 500 600 700 800 900
JOLLY-SEBER ESTIMATES

Fig. 8.1. Comparison of Manly-Parr and Jolly-Seber estimates for Weddell seal data.
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A segment of data from that study appears below to illustrate the method.

DATE
TAG NO.

727

748

818
1030
1040
1274
1286
1288
1445
1541
1577
1590
1594
1620
1893
1901
2018
2097
2285
2593
2619
2673
2700
2708
2717
2807
2930
2945
3010
3454
3511
3585
3685
3714
3923
3949
3999
4071
4190
4220
4224

N
N
w
N
()]
»

[ G N N Y N [ U qp S U U W [ . (N @ P G N @ P (S (S S S (. e Y Y e Y e Y e Y e N o)
P N T T I N s e N N i N N e e N . T Y= U U U e N & B N @ R G N = I o I o I N qp I W G e Y e ]

JEE R\ U UL UK\ U (UL U Y s JYE U G O\ KUK UK U (I U O > s YK (I (L (W e @ Il o Tl @ J cn JSIE QUK NI ik Ui N Qi Wi O e |
PR @ S G . T W U o I ap [ U WS W qp IS WS O G (S N e N e Iyt WU e =W o Noe RS e lo Nollo o R Gy e R U o IS S o B )]

[ G U > JS QR U T U JEPSE UL U U U U U U JIE G o T a J con JSE R I I i i U I i U U U U qu JPSE G U U W g JPE G QR |
P U | N N @ I b IS N PSS W N e e Y N a PSS U qup [ N N A WS N (N N qu [ U\ U U e [ N N e Y e [ (e V= Y N

O
W
H

31 30 22
Ci 28 27 27 21
Pi 0.903 0.871 0.90 0.954

Because this is only a segment of the data, the results should not be taken as actual
estimates of seal numbers.
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The reason that the Jolly-Seber and Manly-Parr methods give essentially the
same results, as suggested in Fig. 8.1, is that the equations for the proportion marked
in the population actually converge to give identical values as the number of
observations (i) increases. As discussed in Example 8.5 above, in some cases all
unmarked individuals cannot be tagged at the time of capture, but instead “batch”
tagging may be employed and an individual is treated as though it were newly tagged
at the time of first capture. With this change, the main results and calculations are
essentially the same, whether all newly caught individuals are tagged at capture, or
only those carrying a tag from independent captures are considered as newly tagged.
Convergence of the two methods can be shown most conveniently by starting with
the estimate of the proportion tagged given below eq. (8.29):

o = %} (i=23,..51) (8.32)

introducing the estimate of the number marked in the population given by eq.(8.25),
and rearranging to give:

= 1 — 1
" 4Rz R(G-K) (8.33)
mpr, mr,

This uses the evident fact that z C — k . As i increases, the number of marked
animals released (R eventually becomes equal to the number of marked animals
encountered in the ith sample ;jmbecause there are no more initially marked
animals that have not already been sighted for the first time. Similarlybdcomes
equal to 1, giving:

:—1 :ﬁz
o 1+C.K—K C :

This then ultimately results in identical population estimates by the two methods for
“batch” marking.

In the case of "batch” marking, the total population size is estimated by
dividing the total number of animals seen (marked and unmarked) by the estimates
of proportion seen [Egs. (8.29) and (8.30)]. Comparisons of the two methods thus
depend on egs.(8.29) and (8.30), as the total number seen will be the same in both
cases.

When marking of previously unmarked individuals continues throughout the
study (“continued” marking), the Jolly-Seber method estimates total population size
as Seber (1982, eq. (5.8,p.200):

N :ﬁ (i = 2,3,...,51)
m

When there are no losses at capture, the number released is equal to the
number seen, so:
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_ o1 R3
N = R[2 +1] (8.34)
mr
For the Manly-Parr method with continued marking:

N = RG

i = T

Again, as Rapproaches mand k approaches ,with z = C; — k we have
equivalence of the two methods.

(8.35)

Example 8.6. Manly-Parr method.

Example 8.5 illustrated the Jolly-Seber method and the same data set is
used here to demonstrate calculations for the Manly-Parr method. C; and ki are
calculated just as illustrated above (page 8.21), with the data of Table 8.1

rearranged below in the same manner as on page 8.21.

1 1 0 0 0 0

2 1 0 0 0 0

3 1 0 1 1 1

4 1 1 0 0 0

5 1 0 0 0 0

6 1 0 0 0 0

7 1 1 0 0 0

8 1 0 1 1 1

9 1 0 0 1 1
10 1 0 0 1 1
11 1 1 1 1 1
12 1 1 1 1 1
13 1 1 0 0 1
14 1 1 1 1 1
15 1 1 1 0 1
16 1 1 0 0 1
17 1 1 0 1 0
18 1 1 1 0 0
19 1 0 0 0 0
20 1 0 0 0 0
21 1 1 1 0 1
22 1 0 0 0 1
23 1 0 0 0 0
24 1 0 0 0 0
25 1 0 0 0 0
26 1 0 0 0 0
27 1 0 0 0 0
28 1 1 1 1 0
29 0 1 1 1 1
30 0 1 1 0 1
31 0 1 1 0 0
32 0 1 0 0 0
33 0 1 0 0 0
34 0 1 0 0 1



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

[eNeoNoNolololoNololoNolololoNolNoloNolNoNoNolNol

Calculations for the above table:

C

k

n 63
p-tilde

N-hat

OO0 0O 0 Tt A A A a0 000

[eNeoNoNeololololNololeNeNeNoeNolNolNo R gt g N

0

15 22
10 11
43 41
0.667 0.500
64.5 82.0

PR G o e R S o I o R S o I o R oo R oo T an I QU QU Gt G o

21
13
42
0.619
67.8

Here, p-tilde is calculated with eq. (8.30)

this short sequence,
accomplished with the program,

the following table:

JOLLY SEBER
i
LOWER
UPPER
MANLY-PARR
LOWER
UPPER

95% CONFIDENCE INTERVALS

OO0 A2 200000 ~0000O0 A2 20O ~0

58

and N-tilde uses eq.
program (JSMP)to do the calculations is in the Appendix.
both the Jolly-Seber and Manly-Parr methods.
this example is required before the two sets of estimates converge.
the estimates are in fair agreement.

It can be
A sequence longer than
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used for
that of
Even with

Bootstrapping can be

ORIGINAL DATA COMPARED TO BOOTSTRAP MEANS

i
JOLLY-SEBER

N-hat

BOOTSTRAP MEANS
MANLY PARR

N-tilde

BOOTSTRAP MEANS

2 3 4
48.2 63.5 51.5
107.5 214.9 114.4
47.8 58.6 51.9
103.2 143.5 105.0

2 3 4
65.6 100.5 71.0
68.2 109.9 74.0
64.5 82.0 67.8
67.0 86.9 70.8

and the results f0r 1,000 bootstraps appear in
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The limited amount of data results in wide confidence limits, with only the
upper estimates for the 3 period being much different for the two methods,
likely as a consequence of the different estimates for that period from the
two methods.

For an example based on a much larger sample, some data on Hawaiian monk
seals used by Eberhardt et al. (1999) have been processed with the same
program. The results from the “Original data” worksheet follow:

A |B|lc|Dp | E |JFBlH] 1 | J | K | L
1 nrows © kK R m r n M-hat p-hat p-tilde N-hat
_2 | =5 T 3 81 35 81 82 70.00 0.5 05 166
_3 |NCOLs 116 45 T4 45 T4 T4 11600 03879 03879 1908
_4 | 20145 56 79 56 TR B1 14614 03832 03862 2114
5 | 167 &% 90 63 90 91 16700 04132 04132 2202
_6 | 128 &2 80 &3 80 80 18200 03351 03351 2387
_7 | 203 52 62 60 &6 £9 20935 0.2865 02857 2408
_8 | 207 F7 84 81 80 84 21750 03724 03ITZ 2256
9 | 20 67T 87 67 &7 67 21000 0319 0319 210
10 | 206 T& 86 80 82 86 21634 03698 03689 2326
A1 ] 203 81 92 90 8T 92 22523 03996 0399 2302
12 | 204 87 88 88 87 B89 20634 04265 04265 2087
mEd 194 84 94 94 84 94 21710 043T 0433 2174
14 | 184 74 84 84 T4 B85 20886 04022 04022 2114
15 | 170 72 86 86 T 86 20306 04235 04235 2031
16 | 157 58 71 71 58 71 19219 03694 03894 1922
A7 ] 145 &7 79 72 ET 79 17097 04621 04821 1T
18 | 124 71 82 82 T 82 15476 05299 05299 1548
19 2 61 97 97.00 &1 97 15584 06224 06224 1558

Here we see that the estimates p-hat (Jolly-Seber) and p-tilde (Manly-Parr)
are virtually identical. Bootstrapping (B =1,000) gave the results of Fig.
8.2.

350

UPPER CONFIDENCE INTERVAL
—n &

300
250

200

NUMBER

150 \
ESTIMATES

100 LOWER CONFIDENCE INTERVAL

50

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CENSUS PERIOD

Figure 8.2. Bootstrap confidence limits for census data on Hawaiian monk seals
collected on Laysan Island.
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The “estimates” in Fig. 8.2 are actually the bootstrap means, but the actual
estimates were virtually the same as the bootstrap means, being within 1 or 2
individuals. The original data for this site and for another (Lisianski
Island)are on sheets attached to the program (JSMP) described and attached to
the Appendix.

8.6. Tests of assumptions

As has been emphasized in presus sections, the crucial assumtion in
capture-recapture studies is that of equalprobabilities of capture amng the
individuals comprising the population. Two major categories of failure of this
essential assumption are:

(1) The probability of capture inherently varies among individuals.
(2) The probability of capture changes with exposure to the capture method.

The first class can besubdivided into two obvious goups, one beingbased on the
frequent observation of behavioral differences between sex agel classes.This is a
prospect most investigators will have in mind indesigning astudy, and onewhich
can normally be dealt wth by doing the necessary calculationsfor such groups
separately. Nodoubt there will be other, more subtle, differences amng individuals
that will result in non-uniformity of response tothe capture method, but, aswith
most features offree-living populations, such "second-order" differencescan be
neglected for many purposes.

The second sub-division ofthe first category constitutesthe prospect ofnon-
uniform application ofthe capture method. One of the most likely prospects is the
occupancy of dhome-range" or"territory" by many terrestrial species. Unless the
capture methods can baniformly (or randomly) applied tothe areaunder study on
each sampling occasion, it isvery likely that individuals will have rather different
probabilities of capture. Live-trapping provides one example. If traps fall well
within a heavily-used part ofan individual's homerange, clearly that individual can
be expected to have a higher probability of capture than would be the case ifrdipe
falls outside the periphery of the usual homange. One obvious precaution is to use
a high density of traps relative to home rangesize; another is tomove traps about
during the study. Some work habeen done on aparent effects of trap density, but
very few efforts have been ade to study theeffect of shifting trapping patterns
during the course of a study.

The second category iswell-known, usually being labelled"trap-shyness" or
"trap-proneness”. Certainly there islittle doubt that individuals of some species
become very skilled at avoiding traps. Trap-proneness needs to be viewed Wittlea
more caution. This is because auniform probability of capture maynonetheless
result in what appears to bean excessive number of capires for some individuals.
More explicitly, with probability of capture P and n sampling periods, pgr®bability
that a givenindividual is caught ximes follows the hiomial distribution, which in
turn, if P is small and n large, may be closelpproximated by &oisson distribution.
Samples from a Poisson mayelv give the mpression that some individuals are
caught unduly often, that is, randomness usually doesn't look "random".

An immediate test to use orecapture data is tocompare the frequencies with
which individuals are captured with those expected under the hypothesis of a
constant probability of capture: either a binomial othe corresponding Poisson
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approximation. The simplest such test is the chi-square goodness of fit tedterdf is
evidence of appreciable gains to or losses from plogulation during the study then
it is not appropriate to applyhe test toall of the data.One must instead limit the test
to a group ofindividuals known to be inthe population during the period used. This
means taking aset of individuals caught early in the study, andagain before its
conclusion. One thus has a group of individuaisught two or more times anknown
to be alive in some fixed time interval. Ideally, one would deal with a set of animals all
caught on one othe first sampling periods, and thenall caught again inthe same
period near conclusion ofthe study. In practice it may be necessary togroup
adjacent periods to obtain enough individuals tomake the test worthwhile. An
alternative test, suggested by Lem(1958), is to applythe "binomial dispersion” test.
This test compares the observed variability in frequencies ofcapture with that
expected ontheoretical gounds if the bihomial distribution applies. Leslie(1958)
suggested that deast 20individuals should beavailable for the test, wth 3 or more
intervening recapture periods. Very likely the bhomial dispersion test is to be
preferred over the chi-square goodness of fit test.

Before applying any test to detect aviolation of the underlying assumptions
one needs tdiave arather explicit notion asto what is being tested for, andwhat
alternatives eist. Thus the above test assumes aconstant probability of capture
throughout the study, and may give an indication as poospects for inherent
differences in "catchabity". Those problems associated with"trap-shyness" and its
converse may be mainly associatedth the first capture (or first few captures) and
thus may not be detected in these tests. Also, if there are individuals ipdpelation
with essentially zero probability of capture, then nest basedon recapture data can
detect that problem (unless the true populatisize isknown or otherwise estimated;
even so very substantial numbers of recaptures may be required, see
Cormack(1966)).

Various tests for the second category of violation ofthe basic assumption of
constant probability of capture are given by Seber(1962,1965)Darroch(1958,1959),
Leslie (1952), and Leslie, Chitty, and Chitty(1953). Littlse seems to benade ofthese
tests in practice, perhaps as aonsequence othe complexity involved in their
derivation and description. It isalso unfortunately true that none ofthe tests are
very "sensitive", i.e., they do not detect anything but extreme departures from
equality of capture probabilities. The program “MARK” referenced in &ction 8.4
above provides awider range of tests, along with acriterion (AIC) for choosing
among candidate models.

8.7 Exercises

8.71 Plot y(i) and x(i) of Example 8.2 and comment on validity of the underlying
model.

8.7.2 Carry out the calculations for a Schnabel estimate on the data of Example 8.3.
Plot y(i) and x(i) and comment on validity of the underlying model.

8.7.3 Do a chi-square calculation on the observed and expected frequencies of
capture calculate in Example 8.3. The actual population in the pen was 135 rabbits
giving 135-76=59 in the not-captured category. Use chi-square to check this against
the expected number and comment on your results.
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8.7.4 Mean Petersen method.

Calculate the mean Petersen estimate described in Example 8.4 on the data of Example
8.3. Plot the data and compare with a plot of the Schnabel estimates obtained in
Exercise 8.7.2. Discuss your results.

8.7.5 Testing for constant probability of capture

In Example 8.2 (Schnabel), frequencies of capture were:

Number of Number of
times caught squirrels

1 33

2 16

3 10

4 4

5 2

6 3

68

if the probability of capture is constant,these frequencies should beapproximated
by a Poisson distribution. Use a chi-square test to check the goodness of fit.

8.7.6 Interpenetrating sampling

When animals are tagged in groups atmmhd to staythat way (i.e., clumped) util the
recapture period, hen it is essential that recaptures yield arandom sample of the
population, or at least that the probability of recapture not dependwlbether or not
a given individual is tagged. Sometimes this can dmomplished bytaking arandom
sample of locdons for recapture. Ifthe recaptures come in gups, then eq.8.3, or
any equation based on theassumption ofrandom sampling of individuals, is not
realistic. For an example of the bias that messult, studentsshould refer to Example
4.8 and compare the variances obtained therewith interpenetrating sampling with
what would be obtained by combining all of the recaptures and using equation 8.3.

8.7.7 Double-tagging

Tag loss can be a major source of bias in many circumstances. One way to improve the
situation is to apply two tags to each individual. When this is done, then the
probability of loss can be estimated from:

I\ Mg

P = ms + 2m(
recaptures carrying only one tag {mand retaining both tags @h A variance
estimate is:

where nyand ny refer respectively to the number of

N N N 1 1
= 2(1 - 2.5 -
vp )= p 21 p Pt ]
and the appropriate Petersen estimate then becomes that of eq.8.1:
A Mn ~ (ms + 2mg)?2
Nd=—" wherem = am
m d

with approximate variance:
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2 A 3
N
VN g = T e
m (1-p)2 m
Data for calculations are taken from a fgeal double-tagging study @Abegglen et al.
1958), in which 34,923 male fur seal pups wesimgle-tagged and 5,000 double-tagged
on St. Paul Island off Alaska. In 1961, 48,458three year old males were harvested,
yielding the following returns:
2,098 originally single-tagged
258 double-tagged (&)
140 single-tagged ()

N

- N
Students should estimate: (1) p , (2) v(/r\) ), 3) m , (4) v(N ), and, (5) -calculate an

adjusted estimate from the single-tagging using p , i.e.:

N Mn A
N adj=— (1- p)
m
with variance:

VN adj) = (1 - p )2v(N )+ N 2v(p )
8.7.8 Models for double-tagging

The underlying probability model for double-tagging isquite simple, and students
should work out the basis for the above equatioNste that the probability ofloss of
each of the twodgs isassumed to be theame. If the tags are dfifferent kinds (or
locaion, etc.) this assumption should be checked (vith chi-square) and separate
corrections may be required.

8.7.9 Survival estimation in a three-point census

The simplest census method for an open population requires observations on 3
occasions (an initial marking, a recapture period in which any unmarked are
marked and a final capture period). Survival from tagging to the first recapture time
is simply estimated as:
1 1
(

M1 mo2 (e AR

A~ 7 - . i with v = +

Mo(mjy2 + 1) (@ 01) 01" gz " mao )

Data for southern hemisphere fin whales (17th report of International Whaling
Commission) are:

N
® 01 =

Number

N
Season _marked* mQ2 mi12 ®
1953-1954 118 14 42 0.64
1954-1955 231 40 48 0.77
1955-1956 217 35 12 1.60
1956-1957 129 9 36 0.28
1957-1958 151 16 14 0.74
1958-1959 105 7 4 0.75
1959-1960 56 3 14

* Recoveries in the same season as the marking are not utilized.
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N
Students should calculate@ g1 and the associated variance estimates, which might be

compared wh avariance calculated from the 7estimates (which are not, however,
independent).



